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Introduction

Recent work in machine learning and artificial intelligence has demonstrated how large models
are able to improve our ability to predict and learn across various[1] [2] [3] [4] [5] [6] [7] contexts.
These large models, referred to as foundational models, reduce the cost of training accurate
models from scratch by offering a broad baseline for others to build upon. The process of
refining pre-trained models for a specific task is called fine tuning.

Though some models can generalize between multiple contexts, such as text to image, image
to text, or molecules to proteins, this typically requires specific consideration of the model
architecture. Model architecture refers to the underlying structural components that make
up models, such as activation functions, loss functions, data normalization, and connectivity.
This paper focuses on a field called scientific machine learning (SciML)[8]. Within this field,
we focus on the specific context of solving partial differential equations (PDEs) and how
model architectures affect the capabilities of foundational models. Solutions to these equations
govern the dynamics of many physical systems, such as electrostatics [9], fluid dynamics [10]
[11], and astrophysics [12]. Calculating these at scale with classical methods requires large
supercomputers, which can run for days and require large amounts of electricity. Moreover,
these systems often fail to take advantage of the highly efficient accelerators present in modern
datacenters, including graphics processing units (GPU) and tensor processing units (TPU). For
these reasons, foundational models for SciML present a great opportunity to reduce energy
usage, calculation times, and costs for PDE solutions.

We will begin by discussing the evolution of machine learning architecture for PDE solving,
focusing on how model architecture affects (i) scalability (ii) and transferability. After this, we
will discuss all architectures and put them in context of their ability to be used for foundational
models.
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Scalability

In order for foundational models to make sense, they need to provide measurable performance
advantages when compared to classical methods like the finite element method (FEM). Key
considerations for AI models include memory requirements and inference time. For example,
using an architecture with poor memory characteristics can make it impractical for real world
use when compared to classical alternatives. Additionally, if such a large model is capable
of very accurate predictions, but does not complete them on a timescale similar to that of
traditional methods, then it is much less useful.

Transferability

Additionally, for foundational models to truly be “foundational”, they must be able to be
fine tuned to solve more specific out of distribution (OOD) problems. Without the ability to
generalize, such models will be limited in the range of problems they can can solve, reducing
their advantage over models trained from scratch.

Model Architectures

Multilayer Perceptron

The multilayer perceptron (MLP) model is a class of artificial neural network which is com-
prised of multiple layers of interconnected neurons. Each neuron behaves according to a
defined activation function, which when provided an input signal, transforms the output
according to this function. This is then feed forward to any 𝑛 number of layers until its
evaluation in the final layer. Such networks of neurons are useful because of their ability
to approximate any function. This ability is defined mathematically through the universal
approximation theory [13], which states that for any function 𝑓 , there exists a multilayer
perceptron with layers 𝜙1, 𝜙2, ... such that 𝜙𝑛 → 𝑓 .

The first application [14] of MLP’s to initial and boundary problems demonstrated that by
training an MLP with just one hidden layer, it is possible to find a differentiable, closed
analytical solution to both PDE’s and ODE’s. This contrasts with traditional methods which
rely on discretization to calculate solutions, which cannot be easily used for further calculations.
Furthermore, this model theoretically scales to higher dimensions. This, however, along with
a number of other characteristics, presents itself as a weakness in practice.

As the dimensionality of the problem increase, which in practice happens often for three and
four dimensional (time dependent) systems, the memory and runtime of the model increases
according to the power of the problem dimensionality. This also entails a significant increase
in the number of data points required during the training of the network, which for many
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physical science fields presents a large problem. If a large amount of data for a physical system
already exists, then there also likely already exists a solution to the underlying dynamics of the
system. Additionally, for each problem, an entirely new model needs to be trained, making such
methods unusable for general foundational models. Finally, though the internal representation
of the solution learned by the network is mesh-free, the input data for the training still needs
to be provided as a grid of data (collocation points), which if incorrectly posed, can lead to
poor solutions.

Physically Informed Neural Networks (PINNs)

PINNs [15] approach the problem of increasingly large training dataset requirements by intro-
ducing constraints upon a model based on already known principles. By incorporating partial
differential equations that describe the physics of the system into model training, the solution
to an unknown system can be found with orders of magnitude less data than a traditional
neural network. This also has the benefit of providing robustness to noisy data, which is the
reality for most real-world applications. Another benefit of including the physical knowledge
of the system is that is allows for solutions to the inverse problem, which is the discovery
of previously unknown parameters of the system.

Though PINNs are a definite improvement over ANNs, they still suffer from many of the same
problems, namely, the curse of dimensionality, large training data sizes, lack of scalability, and
lack of transferability between problems. Perhaps most importantly, there doesn’t yet exist
theoretical proof that PINNs always converge to the global minimum of the system, though
they have shown empirical results which seem to indicate that they do. This is particularly
important when dealing with problems which are ill-posed or unstable, which may result in
incorrect solutions.

Neural Operators (NO)

NOs are an extension of classical neural networks to operator learning. Rather than learning
the specific solution to a given problem, as PINNs and ANNs do, NOs learn the operator, or
the function, which maps the input space to the output space. This shift in the objective
of the problem enables NOs to generalize between many different PDE’s without retraining.
Additionally, certain NOs can generalize across different problem resolutions, where methods
like PINNs and ANNs, though mesh-free, still depend upon the input data’s collocation points
for training. However, NOs, as first posed in [16], still lack the scaling capabilities necessary
for large foundational models. This will be the focus of the following variants.
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DeepOnet

DeepOnet [16] is the earliest work demonstrating that it is possible to efficiently learn nonlinear
operators. DeepOnet consists of two subnetworks, one called the branch and the other the
trunk. The branch network encodes the input function 𝑢(𝑥) at certain fixed locations called
sensors, while the trunk network encoded the output location where the learned operator
𝐺(𝑢)(𝑦) is evaluated. The dot product between these two subnetworks is then taken, providing
the prediction of the overall network.

DeepONet was the first architecture to demonstrate the ability to learn nonlinear operators.
The separation of input functions and output locations into two distinct subnetworks enables
the model to handle high-dimensional, complex systems with flexibility and generality. This
design allows DeepONet to generalize well across different PDEs and boundary conditions,
providing an effective method for solving both forward and inverse problems. Additionally,
DeepONet is capable of handling noisy or sparse data efficiently, making it particularly suitable
for real-world applications where data might be limited or irregular. Its structure enables the
model to learn an entire family of operators, allowing it to be reused in different contexts
without retraining for each specific PDE instance.

Despite these strengths, DeepONet has several limitations. One of the main challenges is its
dependence on the fixed sensor locations in the branch network, which can hinder the models
ability to generalize when the input function is sampled differently or when new locations are
introduced. This can result in suboptimal performance in tasks where the input data distri-
bution changes. Additionally, DeepONet struggles with irregular domains or geometries that
are not easily represented by the fixed sensor locations, limiting its applicability to complex,
unstructured meshes. Finally, the method requires a large number of training samples to
effectively learn the operator, especially in high-dimensional problems, making it less efficient
when data is scarce.

Fourier Neural Operators (FNO)

The following section is based upon the original work in [17].

FNOs significantly enhance the performance of operator learning by leveraging the Fourier
transform, which can be computed in 𝑂(𝑛 log(𝑛)) time. This transform encodes the global
interactions present in partial differential equations (PDEs). Although the input to FNOs
consists of grid-based spatial data, it is immediately transformed from the spatial domain to the
frequency domain via a Fourier layer. In this domain, the low-frequency modes, which capture
global interactions, undergo a linear transformation. Conversely, the high-frequency modes,
which represent finer local details, are either ignored or subjected to smaller transformations
to retain efficiency. After these transformations, the data is projected back into the spatial
domain, where it is passed through non-linear layers, typically with ReLU activations, to
capture complex local behaviors in the system. This process is repeated over several layers,
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with the number of layers acting as a user-defined hyperparameter that controls the depth of
the network and its capacity to model complex PDE dynamics.

FNOs are by far the most popular architecture in the operator learning spaces as they address
three important weaknesses present in DeepOnet. The first, which all prior models lacked,
was mesh invariance. FNOs do not require discretized collocation points when training which
allows for generalization across grid resolutions in downstream predictions without retraining.
This is especially important for learning across different problems, as the resolution of training
data can now vary, enabling the used of mixed resolutions in the same model. This full mesh
invariance also results in the ability to perform super resolution on the data. This is the
ability to take low resolution input data during training and make predictions at resolutions
higher than those of the input. FNOs also exhibit the first true accuracy gains over PINNs and
discrete CFD methods for high dimensional turbulent flows, making them the state-of-the-art
method for solving such problems. Finally, and most importantly, the do not suffer from the
curse of dimensionality, making them optimal for scaling.

The use of the Fourier transform in FNOs introduces some challenges for this architecture.
While the Fourier transform is highly effective for certain types of problems, particularly those
with periodic boundary conditions, it struggles with non-periodic boundaries. Though mitiga-
tions like padding can help, they do not fully resolve the issue, and non-periodic boundaries
remain problematic. Furthermore, the strength of the Fourier transform lies in decomposing
the problem into global components, which means systems dominated by local behaviors, such
as those with sharp discontinuities, are often poorly handled by this method. This is because
sharp transitions are typically represented by high-frequency components, which are either
ignored or underrepresented in the Fourier-based approach, reducing the method’s accuracy
in such cases.

U-FNO

U-FNO [18] incorporates elements from computer vision, namely a form of convolutional
neural network(CNN) called a U-Net, into the FNO method to improve performance on
problems with more local dynamics. The first modification to the architecture is the introduc-
tion of a lifting layer, which increases the input dimensionality of the data. In doing so, this
allows the low mode frequency modes of the fourier transform to include more information
about the local dynamics of the system. The non-linear layer after each fourier layer is then
replaced by a U-fourier layer, which is a U-Net that applies local convolutions to the output
of the fourier layer to capture high frequency information about the system. The final layer
then projects the output back into the original input dimension.

This addition of U-Nets into the architecture improves the accuracy of the model for more com-
plex systems greatly, particularly those that the traditional FNO had trouble solving.Though
this method improves upon the weaknesses of FNOs for predicting local dynamics, it does so
at the cost of reintroducing mesh-independence, which was one of the largest successes of the
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original FNO architecture. For this reason, this architecture isn’t suitable for scaling and is
more successful as a domain specific method for multiphase flows[18].

Transformers

The transformer architecture was first introduced in the context of NLP in [19]. The core
mechanism of transformers is called self-attention, which allows the model to weigh the
importance of different parts of the input sequence dynamically, based on the relationships
between tokens, enabling it to capture context more effectively. Traditional transformers are
modeled as an encoder-decoder architecture. The encoder takes as its input a sequence of
values, such as words, and through a series of self-attention layers and feedforward networks,
transforms this sequence into a set of hidden representations (or feature vectors). Each token in
the sequence attends to every other token, capturing dependencies regardless of their distance
in the input.

The decoder also uses self-attention to generate predictions, but it does so in an auto-
regressive manner, meaning it generates one token at a time, using the previously generated
tokens to inform the prediction of the next one. It takes the hidden representations from the
encoder along with the tokens generated so far as input, learning to predict the next token
in the sequence. This process continues until the entire output sequence is generated. The
architecture is designed to process both the input and output sequences in parallel, leveraging
attention mechanisms to efficiently handle long-range dependencies.

Such transformers have been adapted to the domain of PDE solving through a reinterpreta-
tion of the self-attention mechanism to handle spatial and temporal dependencies in physical
systems. In their original form, transformers use attention to capture relationships between
words or tokens in a sequence, but for PDEs, this idea is extended to capture interactions be-
tween points in a discretized spatial domain. Instead of focusing on tokens, attention is applied
to physical states or grid points, allowing the model to learn complex relationships between
spatial locations and time steps. Variants such as the Fourier Transformer [20] introduced
the idea of replacing traditional dot-product attention with Fourier transforms to capture
global dependencies in regular grids, making transformers more efficient for structured PDE
problems. Other adaptations, like the Galerkin Transformer[20], reformulate attention as a
Galerkin projection, allowing efficient handling of irregular meshes and unstructured domains,
making them suitable for complex geometries. These adaptations enable transformers to gen-
eralize across different PDEs by learning operators, enhancing their scalability and efficiency
in solving scientific problems.

GrapH TrAnsforMer NeuraL OpEraTor (HAMLET)

Graph neural networks (GNNs) [21] are a kind of neural network designed to work effi-
cient on graph data structures, where information is represented as a set of nodes and edges
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connecting them. By training three separate networks, one each for nodes, edges, and global
graph structure, predictions about each of these qualities can be made while incorporating in-
formation from each of the networks. This is done by pooling information about each of these
attributes into a pooling layer and preforming message passing to train the GNN. Message
passing is the process of distributing local information about the graph to neighboring nodes
and aggregating this together. However, this method, when applied to real world problems,
has trouble capturing the global interactions of the system.

The application of GNNs to operator learning is presented through an interesting manipulation
of the kernel formulation of a general PDE. For a general PDE of the form ℒ𝑢 = 𝑓 , where ℒ
is a differential operator that maps the function 𝑢 to 𝑓 , the kernel integral can be formulated
as an iterative solver, such that 𝑢 is approximated through 𝑢𝑡 timesteps 1 − 𝑡. Finally, by
discretizing the kernel integral and approximating it is a sum, we are left with a formulation
of the PDE that is equivalent to the message passing mechanism of GNNs. By formulating
our input mesh as a graph describing the boundary of the problem, GNNs can be used to find
solutions to the operator learning problem.

In this way, HAMLET [22] is able to learn the neural operator for a given graph (irregular
mesh). However, on its own, a GNN doesn’t provide effective solutions to the global inter-
actions in such problems. In order to correct this, HAMLET introduces transformer layers
along with the traditional GNN layers of the network. Transformers, which rely upon the
mechanism of self-attention, are able to effectively make global, non-local predictions on the
mesh by calculating an attention score for all pairwise combinations of nodes. This is then
convolved with the output of the GNN to produce a solution operator that effectively captures
both local and global dynamics of the problem.

However, just as U-FNOs reintroduced dependence upon meshes, so does HAMLET. Though
not entirely the same, HAMLET is mesh-flexible rather than mesh invariant, as though it
does require the input data to be represented as a mesh, this mesh does not have to be a
regular grid, as many prior methods require. This makes scaling and transferability of this
architecture much more difficult than for FNOs.

Transolver

The most recent contribution to PDE solution architectures, Transolver is a flexible, trans-
former based architecture. This section is all based on the original text [23].

Transolver is capable of solving both structured and unstructured problems. The most sig-
nificant advancement in this architecture is the domain specific formulation of attention in
the transformer. Physical attention simplifies the complexity of solving PDEs on inputs
by grouping points with similar physical properties like temperature, pressure, or velocity to-
gether. Such points are grouped together into slices, where the classical form of attention is
applied to all points in this region. This process is adaptive, allowing for its application to
PDEs within different domains.
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This greatly reduces the computational complexity of the problem from the traditional 𝑂(𝑛2)
to approximately 𝑂(𝑛). For this reason, Transolver provides a highly efficient method for op-
erator learning, especially on irregular geometries, where grouping points together simplifies
the problem in the most significant way. Additionally, physical attention provides a more
interpretable formulation of the solution, as the interaction of slices can be understood within
the physical context of the problem, rather than all points on the mesh. Its partitioning of
input points also enables strong OOD performance, as by grouping physically similar points to-
gether, complex boundary conditions on unseen problems can be learned based on the context
of physically similar slices. This context also greatly benefits when learning highly dissimilar
physical problems, such as fluid dynamics with new flow behaviors, as rather than the tradi-
tional spatial context of transformers for PDE solving, points are learned in context of their
physical properties.

Transolver present a very efficient method for operator learning, but still struggles in certain
respects. Most obviously, physical attention is only effective if the problem being solved has
groups of points with similar physical properties. For highly heterogenous systems with large
amount of variation between points, this formulation of attention does not present as much
of a benefit in a performance context when compared to the classical single point attention
mechanism. Furthermore, though the transformer layer of this model is reduced in complex-
ity through the use of point aggregation into slices, this introduces a separate step into the
training process that has its own computational cost. Though this is still more computation-
ally efficient than traditional attention, it introduces additional complexity into the process of
model training that isn’t present for architectures like PINNs and FNOs. Finally, though point
aggregation into slices makes learning more efficient, it comes at the cost of potentially losing
fine grained details in the mesh. For problems with highly localized behavior like turbulence or
phase transitions, grouping points together may result in the loss of important local behavior
of the system.

Discussion

In SciML, the emergence of foundational models has revolutionized how we approach the mod-
eling and solution of complex physical systems, especially those governed by partial differential
equations (PDEs). These models promise to provide general, reusable architectures that can
be fine-tuned for specific tasks, reducing the need for training models from scratch for each
new problem. Key foundational model architectures, such as Multilayer Perceptrons (MLPs),
Physically Informed Neural Networks (PINNs), Neural Operators (NOs), and Transformers
each offer distinct advantages and challenges when applied to SciML tasks, particularly in the
context of scalability and transferability.

The MLP architecture, though foundational in its ability to approximate any function through
universal approximation theory, suffers from scalability issues as problem dimensionality in-
creases. The memory and runtime demands grow exponentially with the number of dimensions,
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making it impractical for high-dimensional PDEs often encountered in scientific applications.
This is especially problematic for foundational models, which require efficiency across a range
of tasks. Furthermore, MLPs lack transferability, requiring a new model to be trained for each
specific problem. In contrast, PINNs attempt to address the data demands by incorporating
physical laws directly into the training process, reducing the need for extensive datasets. How-
ever, despite the gains in data efficiency, PINNs still struggle with the curse of dimensionality,
limiting their scalability for more complex problems. Moreover, PINNs lack strong theoretical
guarantees for convergence to the global minimum, and their transferability between different
problem domains remains limited. For these reasons, this class of architectures, though crucial
in the evolution of PDE solving, do not present the necessary requirements for the basis of a
foundational model.

Neural Operator (NO) models, such as DeepONet and Fourier Neural Operators (FNOs),
introduce a significant shift in SciML by learning operators rather than specific solutions.
This enables greater generalization across PDEs, providing foundational models that can be
reused without retraining for each new instance of a problem. In DeepONet, by separating
input functions and output locations into branch and trunk networks, it is possible to efficiently
learn nonlinear operators. However, this is limited by its dependence on fixed sensor locations,
hindering its generalization to irregular domains. FNOs, which utilize the Fourier transform to
handle global interactions in PDEs, offer mesh invariance, enabling them to generalize across
grid resolutions and perform super-resolution tasks. This scalability makes FNOs well-suited
for foundational models. However, FNOs struggle with non-periodic boundary conditions and
sharp discontinuities, reducing their effectiveness for localized phenomena. U-FNOs attempt
to correct this weakness by integrating U-Net layers to capture more local dynamics, but
reintroduces mesh dependence, limiting their scalability and transferability compared to FNOs.
This class of architectures has shown the most promise for foundational models, with the
majority of existing foundational models, [8] [24] [25] [26] being built upon variants of the
FNO architecture.

Recent advances in the adaptation of transformers to SciML have further enhanced the ability
of foundational models to handle a wider range of scientific problems. HAMLET, which com-
bines Graph Neural Networks (GNNs) and transformers, demonstrates powerful performance
on irregular domains, particularly for problems involving complex geometries. However, HAM-
LET’s mesh flexibility, while allowing it to handle unstructured meshes, adds complexity to
scaling and transferability. Transolver, with its novel Physical Attention mechanism, repre-
sents one of the most recent innovations, reducing the computational complexity from O(n²)
to O(n) by grouping physically similar points into slices for more efficient learning. This ap-
proach greatly enhances its scalability and out-of-distribution (OOD) performance for large
and complex systems but may struggle in highly heterogeneous systems where points are dis-
similar, limiting its full potential for certain classes of problems. With their ubiquity in other
domains [4] [3] [5], transformers have transformed the field of artificial intelligence with their
impact. This has incentivized hardware manufacturers to optimize hardware [27] to efficiently
handle such architectures. For this reason, transformers present a promising architecture for
future foundational models.
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Conclusion

Foundational models in SciML are rapidly evolving, with neural operator-based methods lead-
ing the way in terms of scalability, mesh independence, and transferability. While traditional
architectures like MLPs and PINNs laid the groundwork, newer architectures like FNOs, Deep-
ONet, and advanced models such as Transolver are pushing the boundaries of what can be
achieved, offering more generalizable and efficient solutions for a broad range of scientific
problems. However, creating truly foundational models in SciML still presents significant chal-
lenges, particularly when it comes to data availability and the need to balance the tradeoffs
between various architectures.

Foundational models require large and diverse datasets for pre-training to generalize effectively
across different physical systems, but collecting high-quality, labeled scientific data can be dif-
ficult, costly, and time-consuming. For many scientific domains, particularly in the context
of rare or expensive experiments, such as in climate science [28], materials discovery [29], or
astrophysics [30], the lack of sufficient data becomes a bottleneck. Synthetic data generation
through simulations helps, but these models need to handle the inherent noise and discrep-
ancies between simulated and real-world data, further complicating their performance and
generalizability.

Moreover, there is a delicate balance in choosing the right architecture depending on the specific
problem domain. Models like FNO offer scalability and mesh invariance but may struggle with
sharp discontinuities or highly localized phenomena. On the other hand, architectures such
as U-FNO and HAMLET, which excel at capturing local dynamics and handling irregular
domains, often come at the cost of increased computational complexity or a return to mesh
dependence. DeepONet, with its ability to learn nonlinear operators efficiently, faces challenges
in irregular domains and when required to generalize across non-standard inputs. Meanwhile,
Transolver introduces innovations like Physical Attention that improve scalability and out-of-
distribution performance but may face limitations when dealing with highly heterogeneous
systems.

For these reasons, the key to developing successful foundational models lies in balancing trade-
offs between data efficiency, computational cost, generalizability, and handling of irregular or
complex domains. Achieving this balance requires innovation in model architectures, better in-
tegration of physics-informed constraints, and improvements in data augmentation techniques.
Only by addressing these challenges can foundational models fully deliver on their promise to
revolutionize scientific discovery and simulation.
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